Measurement of Light Vector Mesons by PHENIX Experiment at RHIC ## Deepali Sharma for the PHENIX collaboration April 14, 2011 ## Abstract The PHENIX experiment at RHIC has carried out systematic measurements of ϕ and ω mesons in p+p, d+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV. Consistent results have been obtained using leptonic and hadronic decay modes as well as different analysis techniques. In p+p collisions, the transverse momentum distributions of ω and ϕ , as well as all other mesons measured by PHENIX, are well described by the Tsallis distribution functional form. Combining the e^+e^- and hadronic ($\omega \to \pi^0 \gamma$, $\pi^0 \pi^+ \pi^-$, $\phi \to K^+K^-$) decay channels, ω and ϕ have been measured over a p_T range of 0 - 13.5 GeV/c and 0 - 7 GeV/c respectively. New results obtained using hadronic and dielectron channels of ω and ϕ mesons in d+Au collisions extend the p_T coverage to 0.25 - 13 GeV/c and 0 - 7 GeV/c respectively, and reveal a moderate enhancement at intermediate p_T and a hint of suppression at $p_T > 8$ GeV/c. Both observations are consistent with previous results for π^0 , $\pi^+ + \pi^-$, K_s and $K^+ + K^-$. The nuclear modification factor of ω in Cu+Cu and Au+Au collisions measured over a p_T range of 4 - 12 GeV/c, shows that ω has a similar suppression pattern as that of π^0 and η , strengthening the observation that mesons with different masses have similar behavior but different from the one of baryons. However, ϕ in Cu+Cu and Au+Au collisions, measured from 1 - 7 GeV/c, shows a suppression, that is smaller than that of the π^0 and η in the intermediate p_T range (2 - 5 GeV/c), whereas at higher p_T , within the large experimental uncertainties, the amount of suppression appears similar to that of the light mesons. Results of ϕ production at $\sqrt{s_{NN}}=62.4$ GeV show a similar behavior but with larger uncertainties. This talk will review the most recent results obtained for light vector mesons in different collision systems and energies.